Copied to
clipboard

G = S32xC13order 468 = 22·32·13

Direct product of C13, S3 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S32xC13, C39:5D6, C3:S3:C26, (C3xS3):C26, C32:(C2xC26), C3:1(S3xC26), (S3xC39):3C2, (C3xC39):5C22, (C13xC3:S3):3C2, SmallGroup(468,44)

Series: Derived Chief Lower central Upper central

C1C32 — S32xC13
C1C3C32C3xC39S3xC39 — S32xC13
C32 — S32xC13
C1C13

Generators and relations for S32xC13
 G = < a,b,c,d,e | a13=b3=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 120 in 44 conjugacy classes, 20 normal (8 characteristic)
Quotients: C1, C2, C22, S3, D6, C13, C26, S32, C2xC26, S3xC13, S3xC26, S32xC13
3C2
3C2
9C2
2C3
9C22
3S3
3C6
3S3
3C6
6S3
3C26
3C26
9C26
2C39
3D6
3D6
9C2xC26
3C78
3S3xC13
3C78
3S3xC13
6S3xC13
3S3xC26
3S3xC26

Smallest permutation representation of S32xC13
On 78 points
Generators in S78
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 21 59)(2 22 60)(3 23 61)(4 24 62)(5 25 63)(6 26 64)(7 14 65)(8 15 53)(9 16 54)(10 17 55)(11 18 56)(12 19 57)(13 20 58)(27 42 68)(28 43 69)(29 44 70)(30 45 71)(31 46 72)(32 47 73)(33 48 74)(34 49 75)(35 50 76)(36 51 77)(37 52 78)(38 40 66)(39 41 67)
(1 52)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 27)(25 28)(26 29)(53 72)(54 73)(55 74)(56 75)(57 76)(58 77)(59 78)(60 66)(61 67)(62 68)(63 69)(64 70)(65 71)
(1 59 21)(2 60 22)(3 61 23)(4 62 24)(5 63 25)(6 64 26)(7 65 14)(8 53 15)(9 54 16)(10 55 17)(11 56 18)(12 57 19)(13 58 20)(27 42 68)(28 43 69)(29 44 70)(30 45 71)(31 46 72)(32 47 73)(33 48 74)(34 49 75)(35 50 76)(36 51 77)(37 52 78)(38 40 66)(39 41 67)
(1 52)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 71)(15 72)(16 73)(17 74)(18 75)(19 76)(20 77)(21 78)(22 66)(23 67)(24 68)(25 69)(26 70)(27 62)(28 63)(29 64)(30 65)(31 53)(32 54)(33 55)(34 56)(35 57)(36 58)(37 59)(38 60)(39 61)

G:=sub<Sym(78)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (1,21,59)(2,22,60)(3,23,61)(4,24,62)(5,25,63)(6,26,64)(7,14,65)(8,15,53)(9,16,54)(10,17,55)(11,18,56)(12,19,57)(13,20,58)(27,42,68)(28,43,69)(29,44,70)(30,45,71)(31,46,72)(32,47,73)(33,48,74)(34,49,75)(35,50,76)(36,51,77)(37,52,78)(38,40,66)(39,41,67), (1,52)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,27)(25,28)(26,29)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,66)(61,67)(62,68)(63,69)(64,70)(65,71), (1,59,21)(2,60,22)(3,61,23)(4,62,24)(5,63,25)(6,64,26)(7,65,14)(8,53,15)(9,54,16)(10,55,17)(11,56,18)(12,57,19)(13,58,20)(27,42,68)(28,43,69)(29,44,70)(30,45,71)(31,46,72)(32,47,73)(33,48,74)(34,49,75)(35,50,76)(36,51,77)(37,52,78)(38,40,66)(39,41,67), (1,52)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,71)(15,72)(16,73)(17,74)(18,75)(19,76)(20,77)(21,78)(22,66)(23,67)(24,68)(25,69)(26,70)(27,62)(28,63)(29,64)(30,65)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,61)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (1,21,59)(2,22,60)(3,23,61)(4,24,62)(5,25,63)(6,26,64)(7,14,65)(8,15,53)(9,16,54)(10,17,55)(11,18,56)(12,19,57)(13,20,58)(27,42,68)(28,43,69)(29,44,70)(30,45,71)(31,46,72)(32,47,73)(33,48,74)(34,49,75)(35,50,76)(36,51,77)(37,52,78)(38,40,66)(39,41,67), (1,52)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,27)(25,28)(26,29)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,66)(61,67)(62,68)(63,69)(64,70)(65,71), (1,59,21)(2,60,22)(3,61,23)(4,62,24)(5,63,25)(6,64,26)(7,65,14)(8,53,15)(9,54,16)(10,55,17)(11,56,18)(12,57,19)(13,58,20)(27,42,68)(28,43,69)(29,44,70)(30,45,71)(31,46,72)(32,47,73)(33,48,74)(34,49,75)(35,50,76)(36,51,77)(37,52,78)(38,40,66)(39,41,67), (1,52)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,71)(15,72)(16,73)(17,74)(18,75)(19,76)(20,77)(21,78)(22,66)(23,67)(24,68)(25,69)(26,70)(27,62)(28,63)(29,64)(30,65)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,61) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,21,59),(2,22,60),(3,23,61),(4,24,62),(5,25,63),(6,26,64),(7,14,65),(8,15,53),(9,16,54),(10,17,55),(11,18,56),(12,19,57),(13,20,58),(27,42,68),(28,43,69),(29,44,70),(30,45,71),(31,46,72),(32,47,73),(33,48,74),(34,49,75),(35,50,76),(36,51,77),(37,52,78),(38,40,66),(39,41,67)], [(1,52),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,27),(25,28),(26,29),(53,72),(54,73),(55,74),(56,75),(57,76),(58,77),(59,78),(60,66),(61,67),(62,68),(63,69),(64,70),(65,71)], [(1,59,21),(2,60,22),(3,61,23),(4,62,24),(5,63,25),(6,64,26),(7,65,14),(8,53,15),(9,54,16),(10,55,17),(11,56,18),(12,57,19),(13,58,20),(27,42,68),(28,43,69),(29,44,70),(30,45,71),(31,46,72),(32,47,73),(33,48,74),(34,49,75),(35,50,76),(36,51,77),(37,52,78),(38,40,66),(39,41,67)], [(1,52),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,71),(15,72),(16,73),(17,74),(18,75),(19,76),(20,77),(21,78),(22,66),(23,67),(24,68),(25,69),(26,70),(27,62),(28,63),(29,64),(30,65),(31,53),(32,54),(33,55),(34,56),(35,57),(36,58),(37,59),(38,60),(39,61)]])

117 conjugacy classes

class 1 2A2B2C3A3B3C6A6B13A···13L26A···26X26Y···26AJ39A···39X39Y···39AJ78A···78X
order12223336613···1326···2626···2639···3939···3978···78
size1339224661···13···39···92···24···46···6

117 irreducible representations

dim111111222244
type++++++
imageC1C2C2C13C26C26S3D6S3xC13S3xC26S32S32xC13
kernelS32xC13S3xC39C13xC3:S3S32C3xS3C3:S3S3xC13C39S3C3C13C1
# reps121122412222424112

Matrix representation of S32xC13 in GL4(F79) generated by

64000
06400
0010
0001
,
1000
0100
00781
00780
,
78000
07800
0001
0010
,
0100
787800
0010
0001
,
78000
1100
0010
0001
G:=sub<GL(4,GF(79))| [64,0,0,0,0,64,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,78,78,0,0,1,0],[78,0,0,0,0,78,0,0,0,0,0,1,0,0,1,0],[0,78,0,0,1,78,0,0,0,0,1,0,0,0,0,1],[78,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1] >;

S32xC13 in GAP, Magma, Sage, TeX

S_3^2\times C_{13}
% in TeX

G:=Group("S3^2xC13");
// GroupNames label

G:=SmallGroup(468,44);
// by ID

G=gap.SmallGroup(468,44);
# by ID

G:=PCGroup([5,-2,-2,-13,-3,-3,1048,7804]);
// Polycyclic

G:=Group<a,b,c,d,e|a^13=b^3=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of S32xC13 in TeX

׿
x
:
Z
F
o
wr
Q
<